
www.circuitcellar.com CIRCUIT CELLAR® Issue 183 October 2005 59

air/fuel mixture, thereby cooling the
exhaust gases and ruining your gaso-
line mileage. Avoid this operating
mode if you care about gas mileage.

OBD-II
If your car was manufactured for

sale in the U.S. after 1995, it includes
a 16-pin on-board diagnostics (OBD-II)
connector somewhere in the passenger
compartment. The OBD-II connector
enables a scan tool to read diagnostic
data from the engine computer. By
law, the OBD-II connector must sup-
ply a number of key parameters relat-
ing to the on-board monitoring of
emissions from vehicles, including
data such as engine speed, coolant
temperature, and oxygen sensor read-
ings. Table 1 is an abbreviated list of
OBD-II parameters.

I came up with this project because I
wanted to be able to determine my gas-
powered, four-wheel-drive 1999 Chevy
Suburban’s fuel consumption rate, espe-
cially when it’s towing my large travel
trailer. The best highway fuel consump-
tion rate I ever saw was approximately
13 miles per gallon (mpg). During a
summer trip across the country, my
truck’s highway mileage varied from a
low of 6.5 to a high of 9 mpg while tow-
ing. I desperately wanted to see a real-
time readout of the truck’s fuel con-
sumption rate in miles per gallon. I
figured I could start adjusting my driv-
ing habits when the miles per gallon
got too bad.

My truck’s power train control mod-
ule (the engine computer) supplies two
key real-time engine parameters that
enable me to calculate the instanta-
neous fuel consumption rate in miles
per gallon: speed and the intake air-
flow rate. More on this later.

As for the dashboard display, I select-
ed an off-the-shelf, after-market elec-
tronic tachometer from a local auto
parts store. As you’ll see, the inexpen-
sive tachometer provides an easy-to-
read analog display that features a one-
wire digital input. I also wanted a visual
indication whenever the engine’s fuel
system controller switched over to
Open Loop mode. Modern engines enter
this mode when they start, but they
also reenter it for extra power and when
trying to protect the catalytic convert-
er—one of the only parts in your vehi-
cle that’s warranted for 100,000 miles!
At high speed under heavy load, a mod-
ern engine computer protects the cat-
alytic converter by enriching the

Although the OBD-II connector has
provisions for a total of 16 signal lines,
only two or three are needed to commu-
nicate with a given vehicle. The OBD-II
connector standard provides for four dis-
tinct bit-serial electrical interfaces: SAE
J1850 VPW, SAE J1850 PWM, ISO 9141-2,
and ISO 15765 controller area network
(CAN). Each manufacturer is free to pick
any one of these buses to provide the
legally mandated data defined by OBD-II
regulations. In the case of ISO 9141-2,
there is a choice of two different net-
work protocols, the newest being
Keyword 2000 (ISO 15031). The OBD-II
connector also provides unswitched
12-V power from the battery and two
ground connections.

Why so many bus choices? When
OBD-II regulations were written in
the early 1990s, there were three

FEATURE ARTICLE by Bruce D. Lightner

AVR-Based Fuel Consumption Gauge

With gas prices at record highs, wouldn’t it be useful to be able to monitor your vehicle’s fuel
consumption rate in real time? Bruce’s fuel consumption gauge is the answer.

PID Size Data format Description
0x00 4 One bit each PID (1 = present) PIDs supported (0x01–0x20):
0x01 4 See SAE J1979 MIL lamp status, monitor support/status, and no. of DTCs
0x03 2 0, 2, 3, 4 = open, 1 = closed Fuel system status
0x04 1 100/255% per bit Calculated load value
0x05 1 1°C per bit, –40°C offset Engine coolant temperature
0x0A 1 3 kPa per bit Fuel pressure
0x0B 1 1 kPa per bit Intake manifold absolute pressure (MAP)
0x0C 2 1/4 rpm per bit Engine speed (revolutions per minute)
0x0D 1 1 km/h per bit Vehicle speed (kilometers per hour)
0x0E 1 1/2° per bit, –64° offset Ignition timing spark advance
0x0F 1 1°C per bit, –40°C offset Intake air temperature
0x10 2 0.01 gm/s per bit Mass air flow (MAF) sensor rate
0x11 1 100/255% per bit Absolute throttle position sensor
0x12 1 0 = upstream, 1 = down, 2 = off Commanded secondary air status
0x13 2 See SAE J1979 Location of oxygen sensors
0x1C 1 1 = California, 2 = federal OBD requirements level

Table 1—An abbreviated list of OBD-II Mode 0x01 PIDs, this table shows the kinds of real-time data that you can
read from you car’s engine computer. Multi-byte data returns in big endian format. This is a tiny subset of the data
that’s available from your vehicle’s OBD-II bus.

Contest Winner

Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2005 Circuit
Cellar Inc. All rights reserved.

60 Issue 183 October 2005 CIRCUIT CELLAR® www.circuitcellar.com

widely used serial diagnostic bus
standards: Ford’s (now SAE J1850
PWM), General Motors’s (now
SAE J1850 VPW), and Chrysler’s
and others’ (now ISO 1941-2).
Each of the Big Three got to make
its diagnostic bus of choice part of
the OBD-II standard.

Keyword 2000 appeared in
model year 2000. CAN OBD-II
first appeared in model year 2003
vehicles. CAN-bus is scheduled to
be the only OBD-II bus allowed for
new vehicle designs by 2008. However,
because the new vehicle design cycle
takes approximately five years, and
because vehicles last upwards of 15 years
(30-plus years in my household!), CAN-
bus will not take over any time soon.

SAE J1850 VPW
It’s possible to build a generic diag-

nostic scan tool that can communicate
with any vehicle produced today. But
in the interests of cost and complexity,
this project is confined to communi-
cating with General Motors’s SAE
J1850 VPW diagnostic bus, which is
what my 1999 Chevy Suburban uses.

The SAE J1850 Class B Data
Communication Network Interface
standard provides for variable pulse
width (VPW), bit-serial communication
at approximately 10 Kbps using a signal
wire (OBD pin 2) referenced to the
vehicle’s ground (OBD pin 5). All com-
municating nodes in the vehicle share
the same bus wire. The nodes signal
one another using voltage transitions
varying between 0 and approximately
8 V. The J1850 VPW bus also includes
a fixed pull-down resistor to ground
(500 to 1,500 Ω) such that when no
node is actively driving current into
the bus, the J1850 VPW bus returns to
ground.

Any node connected to the J1850
VPW bus must be capable of accepting
direct shorts to the chassis ground or
the vehicle battery voltage. It must also
tolerate the battery voltage reversed.
(Sometimes people hook up their car
batteries backwards!) I know from per-
sonal experience that the engine isn’t
guaranteed to run if the bus shorts out.
Hardware hackers should note that this
robust electrical interface standard
means that it’s unlikely you’ll fry your

vehicle’s expensive engine computer
while experimenting.

SAE J1850 VPW messages are priori-
tized using a preassigned identifier.
Nodes take turns signaling each other
either by driving approximately 8 V
onto the bus (active state) or not (pas-
sive state). This scheme provides for
nondestructive collision detection. If a
transmitting node sees a positive volt-
age (active state) on the bus when it
expects no voltage (passive state), the
node immediately knows that another
(higher priority) node is using the bus.
Lower-priority nodes back off the bus
in such a way to not interfere with a
higher-priority node’s ongoing trans-
missions.

Data packets are sent over the J1850
VPW bus as a series of 8-bit bytes. A
trailing cyclic redundancy check
(CRC) byte is used for error detection.
The beginning of a data packet is sig-
naled by an active start-of-frame (SOF)
pulse of 200 µs proceeded by a passive
period of at least 300 µs. Successive
bits are sent MSB first using alternat-
ing negative (passive) and positive
(active) pulses of varying lengths
(either 64 or 128 µs). After the SOF
pulse, each voltage transition repre-
sents 1 bit.

The time between transitions, cou-
pled with the pulse polarity, deter-
mines whether a 0 bit or a 1 bit was
transmitted, as revealed in the wave-
forms shown in Figure 1. The end of
the data packet (EOD) is signaled by a
200-µs passive period.

A sample J1850 VPW packet is
shown in Figure 2. Note that the
J1850 VPW data rate is variable,
ranging from 976 to 1,953 bytes
per second, depending on the
exact bit patterns in a packet. The
average data rate is approximately
1.3 Kbps. This relatively low data
rate is why modern vehicles are
transitioning to the CAN stan-
dard, which signals at either 250
or 500 Kbps (i.e., 30 or 60 KBps).

SAE J1979 PACKET FORMAT
The format of J1850 VPW OBD-II

packets is specified by the SAE stan-
dard J1979 “E/E Diagnostic Test
Modes.” Every OBD-II data packet
begins with a 3-byte header. That’s
1 byte each for priority/type, target
address, and source address. The header
is followed by one or more data bytes
and a trailing CRC byte (as defined by
SAE J1850). OBD-II data is collected
using a strict request-response proto-
col. For the purposes this project, real-
time OBD-II data is requested using a
header of 0x68, 0x6A, and 0xF0 fol-
lowed by two data bytes indicating
exactly which data item you want to
read. I selected 0xF0 as the source
address, but anything in the 0xF0 to
0xFF range indicates a diagnostic scan
tool.

Diagnostic data items are selected
by sending a request packet with a
mode byte of 0x01 and a single param-
eter identifier (PID) byte. Table 1
shows a list of possible PID bytes. For
example, vehicle speed can be request-
ed using mode 0x01, PID 0x0D with
the following data packet:

0x68, 0x6A, 0xF0, 0x01, 0x0D, CRC

where CRC is the SAE J1850-defined
CRC byte. You may download the
CRC source code from the Circuit
Cellar FTP site.

The engine computer responds to
this request packet within 100 ms

Active

Passive

Active

Passive

128 µs

– + + –

+ +

64 µs

– + + –

+ +

1 Bit

0 Bit

128 µs

– + + –

+ +

64 µs

– + + –

+ +

Or

Or

Figure 1—These sample waveforms, straight from the SAE J1850
VPW standards document, show you how to send variable pulse width
(VPW) data bits to the engine computer. The width and polarity of the
data bit pulses determine whether you’re sending a 0 bit or a 1 bit.

SOF 0 0 1 1 0 0 0 0 1 1 … EOD

XXXXX
+

+

+

+

+

+

++

+++

++

++

++

+

+

+

+

++

++

+

Figure 2—The SAE J1850 VPW standard states that data packets begin with a 200-ms active start-of-frame (SOF)
pulse, immediately followed by variable-width pulses of alternating polarity (one per bit, MSB first). The width and
polarity of the bit pulses determine their value. The packet ends with a 200-ms end-of-data (EOD) passive period.

www.circuitcellar.com CIRCUIT CELLAR® Issue 183 October 2005 61

with the following response packet:

0x48, 0x6B, ECU, 0x41, 0x0D,
KPH, CRC

where ECU is the engine computer’s ID
byte (e.g., 0x10). KPH is a byte encoded
with the current vehicle speed in
kilometers per hour. Note that the
response packet echoes the mode byte
0x01 with bit 6 set (i.e., 0x41).

Table 1 shows a selected list of mode
0x01 PIDs, including information on
the size (bytes) and format of the
response data values that are returned
by the engine computer. Note that
multi-byte response data values are
returned in big endian order (i.e., MSB
first).

For this project I was interested in
PIDs supported (0x00), vehicle speed
(PID 0x0D), fuel system status (0x03),
and the airflow rate from mass airflow
(MAF) sensor (0x10). Note that not all
vehicles have an MAF sensor. You can
read the PIDs supported bit mask to
check if this sensor is present. Most
large gasoline engines employ an MAF
sensor to monitor engine intake airflow
as part of the engine control firmware
because this method provides for better
air/fuel mixture control. You also need
to read fuel system status because
you’ll want your miles per gallon
gauge to indicate when the engine
isn’t running in Closed Loop mode.

DERIVING MILES PER GALLON
So, given the vehicle’s speed (kilo-

meters per hour) and the mass airflow
rate (grams per second), how do you
determine miles per gallon? Knowing
a couple of other constants makes this
work.

The first constant is the engine’s
air/fuel ratio. In modern, low-emissions
vehicles, the air/fuel rate is main-
tained at a constant chemically ideal
ratio of 14.7 g of air to 1 g of gasoline.
You can convert grams of air per sec-
ond into grams of gasoline per second
by dividing by 14.7.

The second constant needed is the
density of gasoline in grams per gallon.
The density of gasoline varies some-
what according to the fuel grade and
ambient temperature. But given the
accuracy of the display, the following

constant works well for brand-name
unleaded gasoline: 6.17 pounds per
gallon. Knowing that there are 454 g
in a pound, you can divide the mass
airflow rate by 14.7 and by 2,801 (i.e.,
6.17 × 454) to determine the fuel flow
rate in gallons per second. Multiply
that number by 3,600 (the number of
seconds in 1 h) to determine the gal-
lons per hour.

Now you just need the vehicle
speed in miles per hour so you can
divide this by the previous number to
yield the instantaneous miles per gal-
lon. First, you need to convert the
OBD-II vehicle speed reading (VSS)
from kilometers per hour to miles per
hour by multiplying by 0.621371. You
also need to scale the MAF sensor
reading by dividing it by 100 because
the engine computer returns MAF as
grams per second × 100, as a big endi-
an 16-bit quantity.

Here is the final formula:

You’ll use an 8-bit microcontroller for
this project, so let’s get rid of the
floating-point numbers. You’ll calcu-
late and display miles per gallon × 10.
Therefore, you need to calculate:

The C code looks like the following:

MPGx10 = (unsigned short)((VSS
* 7107L)/MAF);

VSS is an 8-bit reading. MAF and
MPGx10 are 16-bit quantities. No
floating-point math required! This C
code uses only the C runtime library’s
32-bit integer multiply and divide rou-
tines. Because of the precision of the
quantities involved, there is no worry
about integer overflow.

ANALOG DISPLAY
An automobile’s dashboard is a hor-

rible environment for electronics in
general and display electronics (e.g.,
liquid crystals) in particular. Whatever

MPGx
MAF

10 7 107 =
VSS

, ×

MPG =

14.7 6.17 454
 VSS 0.621371

 MAF

()
3 600

100
,

 =
 VSS710 7.

MAF

× × ×

×

×

×

the display technology you use, it
must function both in dark as well as
light conditions. The temperature of a
dashboard can go from below freezing
to scorching temperatures that melt
some plastics. Although modern digi-
tal displays offer flexibility, an old-
fashion analog display (a needle swept
over a meter face) would be hard to
beat for this application.

Your local auto parts store probably
has a fine selection of inexpensive
analog gauges. One type of gauge, the
electronic tachometer, has a one-wire
digital interface that easily connects
to a microcontroller. Electronic
tachometers sense engine speed by
connecting a single wire to the low-
voltage side of the ignition coil where
it connects to the distributor’s points.
The tachometer senses the 0- to 12-V
pulses sent to the coil (a high-voltage
transformer), which in turn causes
your vehicle’s spark plugs to spark.

Electronics in the tachometer meas-
ure the pulse repetition rate sensed at
the coil after a bit of signal conditioning
to keep noise spikes from frying the
instrument’s insides. The eight-cylinder,
four-cycle gasoline engine in my truck
sparks four times per engine revolution.
To use an electronic tachometer as an
analog display, I just needed to supply a
simulated ignition coil pulse train. The
tachometer that I chose goes from 0 to
8,000 rpm. Therefore, to get a full-scale
deflection of the needle with the
tachometer set to Eight Cylinder mode,
I need to send 32,000 0- to 12-V pulses
per minute, or 533.3 pulses per second,
which is a 1.875-ms pulse period.

By varying the pulse period over the
range of 0 to 1.875 ms, you can get any
meter deflection you want using a single
I/O pin. You’ll use a pulse train duty
cycle of 50%. This is the same as an
ignition dwell angle of 180°. Modern
electronic tachometers are mostly
insensitive to the dwell angle.

NEW FACE ON THE METER
I used a $30 Sunpro Sun Super Tach II

CP7903 electronic tachometer for this
project. The tachometer, which has a
white face that’s approximately 3″,
came with a four-wire interface (12-V,
ground, coil, and panel lamp power). I
had to change the meter’s face to

62 Issue 183 October 2005 CIRCUIT CELLAR® www.circuitcellar.com

show a miles per gallon scale in the
range of 0 to 40. A little microsurgery
on the bezel’s plastic tabs exposed the
metal faceplate. I removed the needle
with a dinner fork by applying even
pressure to the back.

I copied the stock meter face with a
photo scanner and used my favorite
drawing program to create a new meter
face with a 0 to 40 mpg scale. I added a
valid/error label for the bicolor LED to
show the status of the engine computer
communication link. The new meter
face was printed on adhesive-backed
label stock and applied over the original
meter’s faceplate. After reassembling
the meter, I powered it up to deter-
mine the zero point. I then reattached
the indicating needle with a drop of
glue (see Photo 1).

I replaced the original meter’s
power-hungry, 12-V incandescent bulb
with two bright white LEDs. I also added

a Mode Select momentary push button
switch. Finally, I added a tiny circuit
board with a surface-mount bicolor
LED behind the meter’s faceplate.

My custom meter has seven signal
wires: 12-V power, ground, ignition

coil, white LED power, push button
switch, red LED, and green LED.
These were terminated with two four-
pin connectors that mate with the
microcontroller circuit card (see
Figure 3).

12 V LAMP
COIL
12V

4

3
2
1

Sunpro electronic tachometer

LEDG

LEDR
SW

4

3
2
1 GND

LEDG

LEDR
SW

J1850 VPW controller PCB

LAMP
COIL
MPWR

GND

LIGHT
COIL
MPWR

GND

4

3
2
1

4

3
2
1

LEDG
LEDR
SW
GND

METER

UI

DEBUG *TX
*RX

GND

3
2
1

5
4
3
2
1

6
5
4
3
2

*RESET
SCK

MOSI
MISO
GND

ISP

J1850 +
J1850 –

GND
ISO-L
ISO-K
VBAT

OBD-II

J1850+

GND

+12 V

8
7
6
5
4
3
2
1

16
15
14
13
12
11
10
9

P1

OBD-II Connector

VBAT

PCBMeter

1

Figure 3—Minor additions to the stock Sunpro tachometer include the bicolor indicator LED, a Mode Select push
button, and two white LEDs to light the meter after dark.

Figure 4—An AT90S8515 microcontroller and a few transistors, diodes, resistors, and capacitors enable the firmware to read your vehicle’s speed and intake airflow rate from
the engine computer and then calculate and display miles per gallon using an off-the-shelf electronic tachometer.

www.circuitcellar.com CIRCUIT CELLAR® Issue 183 October 2005 63

MCU INTERFACE
As you can see in Figure 4, I used an

Atmel AVR AT90S8515 8-bit RISC micro-
controller (U1) running at 7.3728 MHz.
Today, the ATmega8515 would be a
better choice. The ATmega8515 is
100% pin- and function-compatible
with the older AT90S8515 part. Both
parts come with 8 KB of in-circuit pro-
grammable flash memory-based
instruction memory, 512 bytes of
SRAM, and 512 bytes of on-chip EEP-
ROM. The AVR RISC instruction set
is well suited for programming in C
and it’s extremely efficient.

In the automotive electronics design
business, we sometimes refer to the
automobile’s 12-V electrical bus as
“the power supply from hell.” You
must pay careful attention to a num-
ber of unwritten rules when drawing
power from the battery. Ignore these
rules, and your sensitive digital elec-
tronics will be doomed!

The nominally 12-V lead-acid bat-
tery in your car can vary from a low of
less than 9 V (when cold-cranking
your engine with a weak battery) to
more than 14 V when charging.
Sometimes that voltage even jumps
up to a more or less steady 24-plus V
when the tow truck driver decides to
jump-start your car with a dual 12-V
battery system!

Also, be prepared for 70-plus-V noise
spikes from various inductive loads
attached to your vehicle’s electrical sys-
tem. Even more amazing is how bad
things get if the 12-V battery is removed
from the circuit. The chemistry of the
lead-acid battery itself normally quiets
the nominally 12-V power bus in an
automobile. A loose battery wire or bad
contact can take the battery, and its
calming effects, in and out of the cir-
cuit. Bad news indeed!

Given everything I’ve mentioned, I
tend to favor the belt and suspenders
approach to drawing power from an
automobile’s battery. As you can see
in Figure 4, battery power (VBAT) is first
fused with polysilicon fuse F1. It’s
then current limited with R4, over-
voltage protected with the polysorb
Z1, filtered with capacitors C6 and
C1, and reverse voltage protected with
diode D5 before being used by other
circuitry.

Regulated 5-V power comes from U3.
The AT90S8515’s U1 is programmed
in-circuit with programming connec-
tor P2. Connector P5 provides access
to the microcontroller’s UART trans-
mit and receive pins for debugging.
External RS-232 level-shifting logic is
needed in this case.

The six-pin connector P1 connects
to the OBD-II bus signals, including
battery power and ground. The J1850
VPW signal is passed through current-
limiting resistor R9 before it’s divided
by four using resistors R13 and R16
and filter capacitor C9. Protection
resistor R15 routes the divided input
voltage to one of the microcontroller’s
analog comparator pins (U1-5).

Resistors R14 and R17 and capaci-
tor C5 provide a stable reference volt-
age for detecting the bit-serial input
from the J1850 VPW bus using the
second analog comparator pin (U1-5).
The analog comparator’s state changes
each time the J1850 VPW bus input
passes through 3.5 V.

The circuit that provides active J1850
VPW pulses to the OBD-II bus starts
with a regulated 8 V from U4. This
voltage is driven into the J1850 VPW
bus through diode D4 and current-
limiting resistor R9 using NPN transis-
tor Q1. Transistor Q1 is normally biased
off by pull-up resistor R8. The NPN
transistor Q2, which is biased normally
off by pull-down resistor R11, level
shifts the microcontroller’s 0- to 5-V
digital output to turn on Q1 whenever
pin U1-2 is driven high. The RC filter
made up of R6 and C4 controls the
slew rate of transistor Q1 via its base
current. When the AT90S8515 resets,
transistor Q1 is off, leaving the J1850
VPW bus in a safe passive mode.

Simulated ignition coil 0- to 12-V
pulses are provided by Q3, R7, and
R5. A high on the microcontroller
RPM output pin U1-3 drives the COIL
signal to ground, simulating closed
points in the vehicle’s distributor.
This digital output generates a pulse
train at the interrupt level under the
control of the AT90S8515’s 16-bit
timer/counter using the CompareA
and CompareB interrupts.

The microcontroller directly drives
three LEDs using current-limiting 1-kΩ
resistors R1, R2, and R3. One LED is

mounted on the PCB, and the other
two are part of a bicolor LED assembly
inside the meter housing connected
via P4. This connector also carries the
signal from the momentary grounding
push button switch in the meter. Push
button sensing pin U1-14 on the
microcontroller is applied as an input,
using an on-chip pull-up resistor.

The COIL signal and the fused raw
battery voltage (VBATF) are supplied to
the meter via connector P3. The
LIGHT signal is a switched, constant-
current path to ground wired to two
bright white LEDs in series with the
VBATF. Regulator U5 limits current to a
constant 15 mA. The NPN transistor
Q4 switches the LEDs on and off
using digital output pin U1-43 (LON).

The 12 VDC power to the meter can
be switched on and off using the
microcontroller’s digital output MON

Photo 1—These are before (a) and after (b) photos of
my off-the-shelf electronic tachometer from the local
auto parts store. I replaced the stock face with my own
in order to display miles per gallon. I also added a
red/green LED to indicate how well the meter is working.

a)

b)

64 Issue 183 October 2005 CIRCUIT CELLAR® www.circuitcellar.com

(U1-42), which controls the base of
NPN transistor Q6. When MON is
high, Q1 pulls the base of NPN tran-
sistor Q5 low, sending battery power
to the meter’s power pin P3-2.

FIRMWARE
I developed the firmware for this

project in C using version 2.95.2 of
the GNU C compiler GCC for AVR
microcontrollers. Development was
performed in Windows using the
WinAVR tool set, which includes a
complete set of the standard com-
mand-line UNIX utilities compiled for
Windows, as well as AVR-GCC,
which is the AVR version of GCC,
and all of its attendant programs and
libraries.

The firmware for this project is rela-
tively simple. There are two basic
functions that must be performed.
One is to repeatedly read the vehicle
speed and the MAF rate from the
engine computer and convert the read-
ings into miles per gallon. The other
function involves generating a pulse
train on the RPM output pin to drive

per bit), delaying either 128 or 64 µs
between each transition, according to
the J1850 VPW standard (see Figure 1).
After sending the trailing CRC byte,
the bus is passive for 200 µs.

The vpw_recv() routine is slightly
more complex because it must time
out if no response from the engine
computer is detected within 100 ms.
The routine begins by waiting for a
200-µs SOF pulse. It then begins col-
lecting bits, assembling them into
bytes, and storing them in the RAM
packet buffer. The routine exits after
vpw_recv() detects that the bus has
remained passive for more than 200 µs.

The fuel system’s status is also read
each read and display cycle, looking
for open loop status. If this state is
detected, the meter setting is tweaked
each read and display cycle. This caus-
es the miles per gallon needle to wig-
gle back and forth slightly around the
true miles per gallon reading. The nee-
dle wiggle provides a clear visual indi-
cation of Open Loop mode.

The bicolor LED on the meter face
is controlled by the high-level AVR

the tachometer needle to the desired
value. You may download the source
code from the Circuit Cellar FTP site.

The RPM pulse train that drives the
tachometer is generated using the
AT90S8515’s 16-bit counter/timer and
a couple of interrupt service routines.
The meter_set() firmware routine
is responsible for this.

A background task sends commands
to the engine computer via the J1850
VPW bus to repeatedly read vehicle
speed and airflow rate, listen for the
responses, and calculate and set the
RPM pulse period to drive the meter
using meter_set(). At the lowest
level, you need a routine (vpw_send())
to send a command packet to the
engine computer and a companion
routine (vpw_recv()) to read any
response packets from the computer.

The vpw_send() routine first waits
for a gap of at least 300 µs on the
J1850 VPW bus. It then it sends a pos-
itively moving (active) 200-µs start-of-
frame (SOF) pulse that’s followed by
alternating transitions between the
passive and active states (one transition

www.circuitcellar.com CIRCUIT CELLAR® Issue 183 October 2005 65

firmware. If the engine computer fails
to respond to an OBD-II request, the
red LED is lit. Error-free reads light
the meter’s green LED. The third
activity LED on the PCB is toggled on
each time a request is made to the
engine computer; it turns off when the
request is completed.

Besides displaying miles per gallon,
the meter’s firmware can be config-
ured to display many other real-time
engine computer parameters using the
push button to select the data to dis-
play. Unfortunately, the meter needs a
more complex faceplate to make this
information readable by anyone
besides a gear head like me!

CONSTRUCTION
The printed circuit card has 100%

through-hole components, including a
socket for the AT90S8515 in a 44-pin
PLCC package. Axial components like
resistors and diodes are inserted verti-
cally to conserve space (see Photo 2).

I didn’t use an enclosure for the
PCB. The entire circuit board assem-
bly was small enough to be inserted in

2.5″ (diameter) heatshrink tubing and
sealed with a heat gun. The on-board
LED pokes through a small hole. This
“wart in the cable” package fits under
my truck’s dashboard. If converted to
a completely surface-mount design,
this circuit could be easily inserted in
the tachometer’s existing enclosure.

I didn’t hardwire the miles per gal-
lon meter to my truck’s J1850 VPW
bus. Instead, the meter plugs into the
OBD-II connector to access the three
signals it uses. Because I switched to

low-power white LEDs to light the
meter, I can afford to leave the meter
plugged in when the PCB is powered,
even when the ignition key is off.

You may want to take the J1850
VPW signal and ground from the wires
in the back of your OBD-II connector
(pins 2 and 5, respectively). If you
decide to use the tachometer’s stock
incandescent lamp, its power should
come from the dashboard’s dimmer
switch. Because this meter may inter-
fere with a factory OBD-II scan tool,
you may also want to add a switch to
disconnect the meter whenever a fac-
tory scan tool is used.

ENGINE COMPUTER
For development and testing, I used

a stand-alone engine computer module
naked on my lab bench. Used engine
computers are cheap. They’re easy to
locate online from the nationwide
junkyard network. I used Car-Part.com
(www.car-part.com). A perfectly fine
J1850VPW engine computer from a
1996 Chevy Lumina van costs less
than $15. (I happen to have the com-

Photo 2—The fully assembled circuit card is small
enough to be slipped into a length of heatshrink tubing.
The result is a compact “wart in the cable” package
that disappears under the dashboard.

SOURCES
Sun Super Tach II (CP7903)
Actron, Inc.
www.sunpro.com

AT90S8515 Microcontroller
Atmel Corp.
www.atmel.com

WinAVR
SourceForge.net (OSTG, Inc.)
http://sourceforge.net/projects/winavr

Issue 183 October 2005 67CIRCUIT CELLAR®www.circuitcellar.com

Bruce D. Lightner works for Lightner
Engineering in La Jolla, California. He
discovered computers several decades
ago and has been building hardware
and software for them ever since. His
name is on more than a dozen patents
in the fields of computer architecture
and telematics. Among his most recent
ventures is Networkcar, which produces
wireless diagnostics/tracking devices
for vehicles big and small. You may
reach him at lightner@lightner.net.

PROJECT FILES
To download the code, go to ftp://ftp.
circuitcellar.com/pub/Circuit_Cellar/
2005/183.

RESOURCES
Atmel Corp., “AT90S8515 8-bit AVR
Microcontroller with 4K/8K Bytes In-
System Programmable Flash,” rev.
0841E-04/99, 1999.

SAE standard J1850, “Class B Data
Communication Network Interface,”
Society of Automotive Engineers,
April 2002.

SAE standard J1979, “E/E Diagnostic
Test Modes,” Society of Automotive
Engineers, May 2001.

plete set of electrical schematics for
my wife’s old minivan.) Salvage yard
professionals call these things
“brains.” The secret to running a brain
outside its body is knowing that it’s
possible. Every brain that I’ve put on a
lab bench has required only connec-
tions for ground, 12-V battery power,
and an ignition switch. Of course, you
need to locate the OBD-II bus connec-
tions (one or two wires) and connect
these to your external equipment as
well. In your case, J1850 VPW, that’s a
single wire. After it’s powered, the
brain should respond to all of the
OBD-II requests listed in Table 1.

Determining which of the 100-plus
signals going to and from a modern
engine computer are for the ground,
battery, ignition, and OBD-II bus lines
typically requires a detailed diagram.
Online auto repair manual providers
like ALLDATA (www.alldata.com) offer
such information. For approximately
$20 per vehicle, you can rent an online
repair manual, including electrical
schematics, for 12 months. The other
option is to guess which wires to use
by looking at the engine computer’s
PCB and components. I’ve hooked up a
couple of brains this way. (In one case, I
was lucky that the designer at Ford had
worried about the power supply from
hell when I got confused and reversed
12 VDC and ground!)

SMOKE TEST
After debugging the firmware with a

homemade AVR simulator, I loaded the
AVR firmware into my circuit board
using the ISP serial programming con-
nector and then plugged it into the
Lumina’s brain in my lab. I added debug
print statements to the firmware in
order to log exactly what was being read
from the engine computer. Remember
that because the brain has no body,
the engine speed sensor always reads
zero. The same goes for the MAF sen-
sor. The tests showed me that every-
thing was working as expected, with
the engine computer responding cor-
rectly to my J1850 VPW request pack-
ets. The simulation exercise paid off.
So far so good!

Surprise! The meter worked the first
time it was installed in my truck. Only
a couple of firmware tweaks were

required. I added retry logic to deal
with occasional negative responses to
J1850 VPW requests (indicating that
my truck’s engine computer was busy).
In addition, my simple vpw_resp()
firmware routine sometimes would
mistake other J1850 VPW packets as
valid responses to data requested by the
vpw_send() routine. The red error LED
told me that I was getting read errors,
especially during periods of hard
acceleration and sudden braking.

Over the last couple of years, I’ve
put over 20,000 miles on the miles per
gallon meter. I think it has helped
contain my lead foot, especially when
I tow a trailer. Today, with the new
and improved price of gasoline here in
California, I’m thinking about chang-
ing the meter’s face to read dollars per
mile! It’s just a small matter of pro-
gramming.

BUILD A GAUGE
This project and its accompanying

design files and source code provides a
clear path to unlocking the secrets of
one of the five on-board diagnostic
buses mandated by the U.S. OBD-II
standard (i.e., SAE J1850 VPW). The
standard, which was first defined by
General Motors, now applies to a
number of vehicle models, including
many from Chevrolet, GMC, Buick,
Pontiac, Saturn, Toyota, Chrysler,
Isuzu, and Daewoo.

Now you can use an inexpensive AVR
microcontroller to collect real-time
vehicle speed and airflow data from an
engine computer using the J1850 VPW
bit serial bus and display that informa-
tion as a fuel consumption rate (in miles
per gallon). The analog display is an off-
the-shelf electronic tachometer with a
modified meter faceplate. Parts for the
project should cost less than $50. The
electronic tachometer is the most
expensive component.

This microcontroller-based design
gets its power safely from the power
supply from hell—the 12-VDC auto-
motive battery bus. Plus, it has a
robust connection to the vehicle’s
SAE J1850 VPW bus, so it tolerates
ground and power-supply short cir-
cuits as well as reversed battery volt-
age. This magic is performed without
special automotive bus interface

chips. Simple transistors, diodes, resis-
tors, and capacitors are all you need.

Remember to use a junkyard brain
from your favorite vehicle. This will
enable you to inexpensively experi-
ment with an engine computer before
doing the same in the driveway or on
the highway! As Robert Crumb’s
famous poster intones, “Keep on
truckin’,” to which the real truckers
add, “Keep the rubber side down!” I

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2005/183
http://www.sunpro.com
http://www.atmel.com
http://www.sourceforge.net/projects/winavr

